Skip to content

Advanced 3D Printing Services

Precision 3D Printing for Demanding Industries

Norck: Precision 3D Printing for Demanding Industries

Norck delivers rapid, high-quality 3D printing services tailored to aerospace, defense, robotics, industrial, automotive, electronics, energy, hardware, and consumer product applications. Our expert engineers and advanced facilities ensure exceptional part accuracy, fast turnaround, and competitive pricing.

Capabilities:

  • HP Multi Jet Fusion (MJF), FDM, SLA, SLS, Polyjet, Carbon DLS: Versatile processes for prototyping and production
  • High-performance materials: Wide selection to meet strength, temperature, and surface finish requirements.
  • Rapid prototyping: Get functional parts quickly for design validation.
  • High-volume production: Scalable manufacturing to support your growth.
  • Design for Manufacturing (DFM) assistance: Optimize parts for 3D printing success.

Why Norck?

  • Quality Assurance: Rigorous inspection processes for reliable results.
  • Technical Expertise: Deep understanding of 3D printing for demanding sectors.
  • Competitive Pricing: Cost-effective solutions without sacrificing quality.

Click here to get a quote for your next 3D printing services projects.

UNMATCHED ENGINEERING SUPPORT

Engineering Expertise, Every Step of the Way

NORCK offers custom manufacturing and engineering solutions tailored to your specific needs, across various industries.

Optimize Your Design for Production

NORCK's engineers can review your design and provide feedback to improve manufacturability, cost effectiveness, and efficiency.

Your Solution, Your Scale

Whether you need a single prototype or full-scale production, NORCK's engineers are ready to collaborate with you. Contact us to discuss how we can bring your concept to life.

Tailored Solutions for NORCK Customers

NORCK specializes in providing unique manufacturing and engineering solutions designed to meet the specific needs of each client. Our expertise covers a wide range of industries and applications.

What is 3D printing?

3D printing is an additive manufacturing process that uses several materials to produce parts and assemblies. It helps turn designs into scaled prototypes as close to the designed model. It is mainly used in the earliest stages of product development and can be used in conceptual models, functional prototypes, tooling, electronics, jewelry, and medical industries.

3D printing requires 3D CAD models to print a part or assembly. The 3D models can be made using parametric CAD software such as Solidworks and CATIA V5, or Subdivision modeling software such as 3DS and Blender.

What are the uses of 3D printing?

Advanced 3D Printing and Additive Manufacturing

What are the uses of 3D printing?

3D printing is used to:
- Validate the functionality of a part/assembly before launching the mass production
- Demonstrate the aspect and features of a product and gives firsthand user experience
- Reduce the cost of a product by minimizing the time of development and production drastically

Advanced 3D Printing and Additive Manufacturing

How is it fabricated?

The 3D printer slices the 3D model into several cross sections and prints them layer by layer. At Norck, we offer the following 3D printing methods:

1. Plastic 3D printing: Multiple 3D printing methods produce a plastic part, such as FDM, SLA, SLS, polyjet, and carbon DLS.

2. Fused deposition modeling (FDM): FDM is the most popular and most cost-effective of the 3D printing processes. It uses a filament of a thermoplastic material such as PLA and ABS. The filament passes through a hot nozzle that melts it, and using a computer-controlled system, the nozzle moves along two axes and deposits the melted material on a platform. When a whole layer of the desired shape is deposited, the platform moves down to deposit the next layer. Once the 3D printed model is finished, it can be removed from the platform. Post-processing might be required to remove any excess material and burrs or to smooth surfaces.
- Most used materials:
   •    Polylactic acid (PLA)
   •    Acrylonitrile butadiene styrene (ABS)
   •    Polyethylene terephthalate (PET) 
   •    Thermoplastic polyurethane (TPU)
   •    Poly-ether-ketone (PEEK)
   •    Polyphenylsulfone (PPSU)

3. HP Multi Jet Fusion: It is a 3D printing method invented by Hewlett-Packard. In HP multi-fusion jet. Each layer of powder material is deposited upon a print bed by a material depositing unit. Then a thermal unit moves across the print bed to deposit a fusing agent and detailing agent. The fusing agent is deposited where powder particles should fuse, and the detailing agent is applied to the contour to help cool the part. The thermal units also contain infrared light to merge the particles and form the desired shape.
Once the 3D printed model is finished, it should cool down before being removed from the platform. Post-processing might be required to remove any excess material and burrs or to smooth surfaces.
-Most used materials:
   •   
PA 11
   •    PA 12
   •    PA 12 40% GF
   •    PP

4. Selective laser sintering (SLS): Selective laser sintering is an additive manufacturing process in which particles from a bed of plastic powder are fused to produce parts and assemblies. Each layer of powder material is deposited upon a print bed by a material depositing unit. Then a laser beam is generated and oriented by a rotating mirror to fuse powder particles.
Once the 3D printed model is finished, it should cool down before being removed from the platform. Post-processing might be required to remove any excess material and burrs or to smooth surfaces.
- Most used materials:
   •   
PA 11
   •    PA 12
   •    PA GF
   •    PA FR
   •    Ceramics
   •    Glass

5. Stereolithography (SLA): It is a process in which a UV-sensitive resin is cured to form parts and assemblies with a laser. The laser generator projects a cross-section on a transparent window under the resin bath, which will solidify the UV-sensitive resin. The hardened resin will be attached to a platform and pulled up. The platform will be lowered again for the next layer, which will be attached to the solidified layer.
Once the 3D printed model is finished, it can be removed from the platform and submerged in isopropyl alcohol to remove any excessive resin. Then the model gets exposed to passive UV light.
- Most used materials:
   •    Polycarbonate-like Resin
   •    Polypropylene-like resin)

6. Polyjet: The polyjet process is similar to inkjet printing. The nozzle moves along two axes and jets liquid UV-sensitive photopolymer onto a platform. Next, UV light is used to solidify the deposited layer of photopolymer. When a whole layer of the desired shape is deposited, the platform moves down to deposit the next layer. If the part requires support structure, drops of wax are jetted to support the model, which will be removed later by heating the printed piece.
Once the 3D printed model is finished, it can be removed from the platform. Post-processing might be required to remove any excess material and burrs or to smooth surfaces.
- Most used materials:
   •    Polycarbonate-like Resin
   •    polypropylene-like resin
   •    Rubber-like resin

7. Carbon DLS: Carbon Digital Light Synthesis is a 3D printing process that uses a UV-sensitive resin to produce the desired model. In this process, a light source is used to project UV cross sections of a 3D model on a window, which transforms the resin.
- Most used materials:
   •    Elastomeric resin
   •    Flexible resin
   •    Rigid resin
   •    Silicone
   •    Cyanate ester
   •    Urethane Methacrylate
   •    Epoxy
   •    Medical ABS-like

8. Metal 3D printing: At Norck, we can print with metallic materials such as Stainless steel, Cobalt, and Inconel. The process that we use is DMLS.

9. Direct metal laser sintering (DMLS): Like SLS, direct metal laser sintering is a process that uses a laser to form the desired shape by fusing particles of metallic powder instead of plastic. In this process, a roller deposits layers of powder metal on the print bed, then the laser fuses powder metal particles on each layer.
- Most used materials:
   •    Titanium
   •    Steel
   •    Stainless steel
   •    Aluminum
   •    Nickel
   •    Cobalt
   •    Copper
   •    Inconel
   •    Gold
   •    Platinum
   •    Silver

10. Vapor smoothing: It is a post-process for 3D printed parts with a coarse surface finish to smooth and enhance their mechanical and visual aspects. Vapor smoothing uses chemical vapor solvents to smooth the 3D-printed part by melting the surface.
- It is used with most polymers and elastomers, such as:
   •    ABS
   •    PP
   •    PC
   •    PLA
   •    PETG
   •    PA 12
   •    ASA

Parts and assemblies should follow specific design rules to be printed correctly. Norck offers engineering services that will help you confirm your design for 3D printing.

LEARN MORE ABOUT OUR CAPABILITIES

Norck: Your Data-Driven Partner for On-Demand Manufacturing Excellence

Norck is a technology-powered manufacturing leader specializing in CNC machining, 3D printing, sheet metal fabrication, and injection molding. Our intelligent, data-driven approach ensures exceptional quality, optimized costs, and seamless supply chain management for companies worldwide.

Key Services:

Why Choose Norck?

  • AI-Powered Manufacturing: Data and AI optimize our processes for superior quality, minimized costs, and supply chain visibility
  • Vast Production Capacity: Our extensive partner network in Europe and the US guarantees both low and high-volume production.
  • End-to-End Expertise: Our team of engineers, data scientists, and product developers ensure design for manufacturability and unparalleled service
  • Single-Source Solution: Norck streamlines your supply chain, reduces overhead, enhances purchasing power, and delivers just-in-time results.
  • Online 3D Printing Services: Norck's online 3D printing services provide a fast, easy, and reliable way to bring your ideas to life with high quality, custom made parts.
  • 3D Printing Services Near You: Your search for 3D printing services ends here. Norck offers tailored engineering and manufacturing support that begin with your unique project needs. Whether you're a local business or searching online, our expert team delivers top-quality, customized 3D printing solutions to bring your designs to life.

Experience the Norck difference. Get a quote fast for your manufacturing needs today!

OUR SERVICES

WHAT NORCK DOES BEST

WHY NORCK?

Access to Huge Production Capacity - Norck

Get Access to Huge Production Capacity

Besides Norck's own production capacity, Norck has access to hundreds of top quality CNC machining, sheet metal, 3D printing, injection molding, and urethane casting providers across the United States, Germany, and Europe.

 Creating Supply Chain

Creating Supply Chain Resilience

Working with Norck effectively reduces your risks against supply chain shocks, unforeseen delays, price fluctuations, and quality issues, thus increasing your company’s resilience in its outsourcing and supply chain.

Innovation at Work - Norck

Innovation at Work

Besides being an artificial intelligence augmented digital manufacturing company, we also develop extremely innovative manufacturing tools, fixtures and of course software applications such as RapidCAD, a highly intuitive and innovative web based CAD application.

Art artificial intelligent system

Artificial Intelligence Augmented

Norck gathers and uses thousands of data points to augment its engineers with a state of the art artificial intelligent system for better design and manufacturability.

Green Driven - Norck

Green Driven

Norck encourages its partners to be carbon-neutral, and gives carbon neutral compliant suppliers priority over non-compliants.

LEADING ON DEMAND DIGITAL MANUFACTURING COMPANY IN THE UNITED STATES, GERMANY, AND EUROPE